Lois de composition interne : Exercices

1

```
Dans l'ensemble E=\{a;b;c\}, on définit une loi interne \times par: a\times a=b\times c=c\times b=a b\times b=a\times c=c\times a=b c\times c=a\times b=b\times a=c Quelles sont les propriétés de cette loi ?
```

2

Soit A un ensemble non vide muni de deux lois \star et \circ , admettant le même élément neutre e, telles que:

```
\forall (x; y; z; t) \in A^4, (x \star y) \circ (z \star t) = (x \circ z) \star (y \circ t)
Etablir que \star = \circ, que la loi \star est associative et commutative.
```

3

```
Dans \mathbb{R}, on définit: x * y = x + y - x \times y
Calculer *^n x pour n \in \mathbb{N}.
```

4

Dans \mathbb{R} , on considère la famille des lois internes \top définies par: $\forall (x;y) \in \mathbb{R}^2, \ x \top y = kxy + k'(x+y), \text{ où } (k;k') \in \mathbb{R}^2$ Déterminer les lois \top qui sont associatives.

5

```
Soit (E;*) un magma tel que: \forall (x;y) \in E^2, \ x*(x*y) = (y*x)*x = y Montrer alors que * est une loi commutative.
```

6

```
E étant un ensemble non vide muni d'une relation d'ordre \mathcal{R} telle que: \forall (x;y) \in E^2, Inf\{x;y\} existe. On pose x*y = Inf\{x;y\} Vérifier que la loi * est commutative, associative, idempotente.
```

Inversement, soit E un ensemble non vide dans lequel on définit une relation binaire \mathcal{R} par: $x\mathcal{R}y \Longleftrightarrow x*y=x$

où * est une loi interne commutative, associative et idempotente.

Vérifier que \mathcal{R} est une relation d'ordre pour laquelle $Inf\{x;y\} = x * y$

7

Soit $(E; \bot)$ un magma. Pour tout $a \in E$, on définit les applications:

$$f_a: x \mapsto x \perp a$$

 $g_a: x \mapsto a \perp x$

- a) Que signifie $f_a = g_a = Id_E$?
- **b)** Que signifie: $\forall a \in E, f_a = g_a$?
- c) On suppose \perp associative, admettant e pour élément neutre.

Soit $a \in E$ symétrisable. Que peuton dire alors de f_a et g_a ?

- d) Que signifie f_a et g_a injectives?
- e) On suppose \bot associative, commutative et qu'il existe $a \in E$ tel que f_a soit bijective. Montrer alors que \bot admet un élément neutre e. Etablir que si, de plus, f_b est surjective pour tout b, alors $(E;\bot)$ est un groupe (i.e., ici, tout élément b de E admet un symétrique).